Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Restor Ecol ; : e13646, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35603134

RESUMO

Coral restoration initiatives are gaining significant momentum in a global effort to enhance the recovery of degraded coral reefs. However, the implementation and upkeep of coral nurseries are particularly demanding, so that unforeseen breaks in maintenance operations might jeopardize well-established projects. In the last 2 years, the COVID-19 pandemic has resulted in a temporary yet prolonged abandonment of several coral gardening infrastructures worldwide, including remote localities. Here we provide a first assessment of the potential impacts of monitoring and maintenance breakdown in a suite of coral restoration projects (based on floating rope nurseries) in Colombia, Seychelles, and Maldives. Our study comprises nine nurseries from six locations, hosting a total of 3,554 fragments belonging to three coral genera, that were left unsupervised for a period spanning from 29 to 61 weeks. Floating nursery structures experienced various levels of damage, and total fragment survival spanned from 40 to 95% among projects, with Pocillopora showing the highest survival rate in all locations present. Overall, our study shows that, under certain conditions, abandoned coral nurseries can remain functional for several months without suffering critical failure from biofouling and hydrodynamism. Still, even where gardening infrastructures were only marginally affected, the unavoidable interruptions in data collection have slowed down ongoing project progress, diminishing previous investments and reducing future funding opportunities. These results highlight the need to increase the resilience and self-sufficiency of coral restoration projects, so that the next global lockdown will not further shrink the increasing efforts to prevent coral reefs from disappearing.

2.
J Hered ; 106 Suppl 1: 448-58, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26245780

RESUMO

Previous investigations of the population genetics of the scalloped hammerhead sharks (Sphyrna lewini) in the Eastern Tropical Pacific have lacked information about nursery areas. Such areas are key to promoting conservation initiatives that can protect young sharks from threats such as overfishing. Here, we investigated the genetic diversity, phylogeography, and connectivity of S. lewini found in 3 areas of Colombia's Pacific coast: around Malpelo Island and in 2 National Natural Parks on the Colombian Pacific mainland (Sanquianga and Ensenada de Utría). We analyzed mtDNA control region (CR) sequences and genotyped 15 microsatellite loci in 137 samples of adults and juveniles. The mtDNA analyses showed haplotypes shared between the Colombian Pacific individuals sampled in this investigation and other areas in the Eastern Tropical Pacific, the Indo-Pacific, and with sequences previously reported in Colombia (Buenaventura Port), as well as 4 unique haplotypes. Population assignment and paternity analyses detected 3 parent-offspring pairs between Malpelo and Sanquianga and 1 between Malpelo and Utría. These results indicate high genetic connectivity between Malpelo Island and the Colombian Pacific coast, suggesting that these 2 areas are nurseries for S. lewini. This is, to our knowledge, the first evidence of nursery areas identified for the scalloped hammerhead shark anywhere in the world. Additional conservation planning may be required to protect these nursery habitats of this endangered shark species.


Assuntos
Variação Genética , Genética Populacional , Tubarões/genética , Animais , Colômbia , Conservação dos Recursos Naturais , DNA Mitocondrial/genética , Espécies em Perigo de Extinção , Marcadores Genéticos , Genótipo , Haplótipos , Repetições de Microssatélites , Filogeografia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...